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2. Theory 
 

Time-independent Hamiltonian eigen equation is given by [7] 
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To describe the transfer matrix method the simple scenario in Fig. 1 will be 

considered first. In region 1 the wave function is termed Ψ1 and the potential is zero, in 
region 2 the wave function is termed Ψ2 and the potential is V0 and in region 3 the wave 
function is termed Ψ3 and the potential is again zero. The solution to the Hamiltonian eigen 
value equation (1) in these three regions are 
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The wave function (2) and its derivative is required to be continuous at the 

discontinuity between adjacent regions, i.e. z=0 and z=a. Using the continuity conditions 
between region 1 and region 2 yields the two equations 
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which gives the following restrictions on the coefficients 
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These conditions can be written in matrix form 
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(9) can be written as 
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M12 is known as discontinuity matrix, it describes the propagation of the wave function 
across boundary. Using the transfer matrix technique (TMT) the final equation for a double 
barrier single well RTD can be formulated as 
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where, (A,B) and (K,L) are coefficients of matrices for wave function profile of contact 
layers. Ms is known as system matrix. 
(10) can be written as 
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Transmission coefficient can be formulated as the ratio between the flux incident from left 
side in the barrier and the transmitted flux in the right side, when no incident wave from the 
left. 
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When electric field is applied Schrödinger’s equation will be modified as  
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Where ζ(z) is the electric field applied along the direction of confinement. Considering new 
coefficients (A,B) and (C,D) for contact layers, transmission coefficient can be obtained from 
the following expression 
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We are considering T2 as T(E) and T1 is the bare single barrier transmission probability.  
In order to get unity effective transmission coefficient of the emitter barrier, T1 can be 
considered as [8] 
 

l
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where, L is the quantum well length, l is the mean free path which is related to mobility of 
carrier by the relation given below [9] 
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where, vavg is the average velocity, τn is the mean free time which is related to electron 
mobility in GaN layer (µn). Doping concentration and temperature dependent mobility of 
electron in GaN is given by [10]  
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where, µmin, µmax, Nref, β1, β2, β3, β4 and α are fitting parameters for this mobility model of 
GaN. 

Considering both scattered and incoherent electrons in transmission, the effective 
transmission coefficient Teff can be written in terms of mobility of electron in GaN layer 
grown on virtual buffer [8] 
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where Γn is the resonance width of n-th energy level given by [8] 
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where, En is the resonant level energy measured from the bottom of the quantum well. En is 
given by [8]  
 

Lm

n
En 2

222

2 
                                                            (22) 

 
 
 
 
 
 
 
 
 
 
 



 

 

Al0.2G
field 
carrie
nm a
barri
GaN 
abov
µmin, 
cm2/v
 

Fi

 

3. Resu
 

Using (1
Ga0.8N/GaN
is calculate

er in presen
and 1 nm r
er is consid
is taken as

ve the condu
µmax, Nref, β

v-s, -1.02, -

ig. 2: Variatio

 
 

ults and Dis

1) to (14) 
N double ba
ed. With th
nce and abse
respectively
dered as 0.4
 0.222 m0 [
uction band
β1, β2, β3, β4

-3.84, 3.02, 

on of Tc with

scussion 

Fig. 1: Tunn

and with t
arrier single
he help of (
ence of app

y unless oth
42 eV [11] 
[12]. Fermi 
d minimum 
4 and α for m
0.81 and 0.6

h electron en

 
neling throug

 
the help o

e well reson
1) to (20) T

plied field. B
herwise stat
and the val
energy of G
(T=300K) 

mobility mo
66 respectiv

 
nergy and tem

cm2/v-s

Int. J. Nanoe

gh a single ba

f Fig. 1 tr
nant tunneli
Tc is obtain
Barrier widt
ted. Here t
lue of electr
GaN is cons

[13]. Value
odel of GaN
vely [10].  

mperature in 
s. 

electronics and 

 

arrier. 

ransmission 
ing diode in
ned as a fun
th and well 
he value o
ron effectiv
sidered as lo
es of fitting

N in (19) are

absence of ap

Materials 6 (20

n coefficien
n absence o
nction of m
width are t

of V0 for A
ve mass in h
ocated abou
g parameter
e 295 cm2/v

 

pplied field. 

013) 129-137 

133 

nt (Tc) of 
of applied 

mobility of 
taken as 2 

Al0.2Ga0.8N 
hexagonal 
ut 0.08 eV 
rs such as 
-s, 1460.7 

N=1019 



Subhra Cho

134 
 

F
energy an
increases
above 0.6
 

Fig. 3: E

 
V

in GaN e
of electro
interestin
 

Fig. 4: C

 

wdhury, Dhrub

ig. 2 show
nd temperat
s. A peak is 
62 eV at all 

Effect electron

Variation of 
emitter laye
on decrease

ng details ar

Comparative 

bes Biswas / Eff

ws the com
ture in abse
observed at
temperatur

n energy and

transmissio
r is shown 
es which re
e seen abov

analysis of T

fect of device p

mparative an
ence of appl
t around 0.2
es. 

d doping conc
fiel

on coefficie
in Fig. 3. W
esults in in
ve 0.62 eV w

Tc profile for
N=1

parameters on tr

nalysis of t
lied electric
28 eV and T

 
centration of
ld. T=300K.

ent with ele
With the inc
ncreasing Tc
where the Tc

 
r different tem
1019 cm2/v-s.

ransmission…

transmission
c field. As th
Tc goes to sa

f emitter laye

ctron energ
crease in do
c. Here als
c goes to sa

mperature in
 

n coefficien
he temperat
aturation for

er on Tc in ab

gy and dopin
ping concen
o peak is o

aturation.  

 

n presence of 

nt with ele
ture increas
r electron e

 

bsence of app

ng concentr
ntration mo
observed an

 

f applied volt

ectron 
ses Tc 
nergy 

plied 

ration 
obility 
nd no 

tage. 



 

 

trans
const

Fig. 

 

silico
coeff
mobi
of G
GaN 

Fig

Fig. 4 a
smission coe
tant in the r

 

5: Variation 

Fig. 5 sh
on substrate
ficient dislo
ility change

GaN on silic
layer such 

g. 6: Mobilit

and Fig. 5 
efficient in 
egion 0.25 V

of transmiss

hows almos
e due to la

ocation occu
es transmiss
con previou
as 700 cm2/

ty of electron

show the 
presence o

V >applied 

ion coefficie

st the same 
arge lattice 
urs which a
sion coeffici
us research p
/v-s, 900 cm

n in GaN emi

effect of t
of applied v

voltage> 0.

 
ent with appl

layer. T=30

result as th
 mismatch 

affects the m
ient also ch
papers [14-

m2/v-s, 1350

 
itter layer ver

width.

Int. J. Nanoe

temperature
voltage resp
.31 V at all 

ied voltage a
00K. 

he previous 
(17 %) an

mobility of c
hanges. Due
-16] show d
0 cm2/v-s an

rsus transmis

electronics and 

e and dopin
ectively. In
temperature

and doping co

figure Whe
nd differen
carrier in th

e to differen
different mo
nd 1670 cm2

ssion coeffici

Materials 6 (20

ng concent
n Fig. 4 Tc 
e.   

 

oncentration 

hen GaN is 
nt thermal e
he GaN laye
nt growth m
obility of e
2/v-s.  

 

ient for vario

013) 129-137 

135 

tration on 
is almost 

in emitter 

grown on 
expansion 
er. As the 

mechanism 
lectron in 

ous well 



Subhra Cho

136 
 

F
coefficien
width. Tc

 

Fig. 7: Va

 
In

width is 
increases
2 nm and

 

4.
 

R
proposed
possible 
this RTD
AlGaN/G
transmiss
the time, 
 

R
 

[1] G. 
Lam

[2] S. S
Let

[3] A. K
[4] M. 

M. 

wdhury, Dhrub

ig. 6 show
nt decrease
c decreases 

ariation of tra

n Fig. 7 va
shown. Tc 

s transmissio
d 3 nm are s

. Conclusi

Results obtai
d Al0.2Ga0.8N
with the int

D structure. 
GaN RTDs 
sion coeffic
after a certa

References 

Martin, S. 
mbrecht, B. 
Sakr, E. Wa
tt., 99 (2011
Kikuchi, R.
Hermann, E
Stutzmann,

bes Biswas / Eff

ws the depe
s almost lin
when well w

ansmission c

ariation of t
decreases a
on coefficie
o close that

ion 

ined from th
N/GaN RT
troduction o
It is concl
and also t

cient. It is fo
ain well wid

Strite, A. 
Segall,  Ap

arde, M. Tch
1) 142103 
. Bannai, K.
E. Monroy, 
, M. Eickho

fect of device p

endence of 
nearly with
width is hig

coefficient w
bar

transmission
almost linea
ent decrease
t they are se

he analytica
TD structure
of high tem
luded that a
thin barrier
ound that T
dth it decrea

Botchkarev
ppl. Phys. L
hernycheva

. Kishino, A
A. Helman

off, Phys. St

parameters on tr

f Tc on mo
h increasing
gher or equa

with mobility 
rrier widths.

n coefficien
arly with inc
es. In this fi
een as almos

al modeling
e show tha

mperature an
absence of 
r wide wel

Tc does not 
ases. 

v, A. Agrw
Lett., 65 (199
a, L. Rigutti

Appl. Phys. 
n, B. Baur, M
tatus Solidi 

ransmission…

obility and
g mobility o
al to 10 nm.

of carrier in

nt with mob
creasing mo
igure the gr
st a same lin

g of transmi
at high per
nd heavily d
applied vo

l structure 
increase wi

wal, A. Rock
94) 610 
i, N. Isac, an

Lett., 81 (2
M. Albrech
C, 1 (2004)

well widt
of electron 
 

GaN emitter

bility of ca
obility. As t
aphs of Tc 

ne. 

ssion coeffi
rformance c
doped GaN

oltage is mo
is preferre

ith increasin

kett, H. Mo

nd F. H. Jul

002) 1729 
ht, B. Daudin
) 2210 

th. Transmi
for a fixed

 
r layer for va

arrier and b
the barrier w
for barrier w

icient (Tc) o
characteristi

N emitter lay
ost favorabl
ed for maxi
ng well wid

orkoc, W. 

lien, Appl. 

in, O. Amba

ission 
d well 

arious 

barrier 
width 
width 

of the 
ics is 
yer of 
le for 
imum 

dth all 

R. L.  

Phys. 

acher, 



Int. J. Nanoelectronics and Materials 6 (2013) 129-137 

 

137 
 

[5] S. Golka, C. Pflugl, W. Schrenk, G. Strasser, C. Skierbiszewski, M.Siekacz, I. 
Grzegory, S. Porowski, Appl. Phys. Lett., 88  (2006) 172106 

[6] Z. Vashaei, C. Bayram, M. Razeghi, J. Appl. Phys., 107 (2010) 083505 
[7] B. G. Streetman, S. Banerjee, Chapter 2, in Solid State Electronic Devices, 2nd ed. 

New Delhi, India: Prentice Hall (1986) 40 
[8] H. Sheng, J. Sinkkonen, Superlattices and Microstructures, 12 (1992) 453 
[9] J. Bernhard, Eur. J. Phys., 30 (2009) 1 
[10] M. Farahmand, C. Garetto, E. Bellotti, K. Brennan, M. Goano, E. Ghillino, G. Ghione, 

J. Albrecht, P. Ruden, IEEE Trans. on Elec. Devices, 48 (2001) 535 
[11] C. Bayram, Z. Vashaei, M. Razeghi, Appl. Phys. Lett., 97 (2010) 092104 
[12] A. M. Witowski, K. Pakuła, J. M. Baranowski, M. L. Sadowski, P. Wyder, Appl. Phys. 

Lett., 75 (1999) 4154 
[13] P. Perlin, E. Litwin Staszewska, B. Suchanek, W. Knap, J. Camassel, Appl. Phys. 

Lett., 68 (1996) 1114 
[14] P. Javorka, A. Alam, M. Wolter, A. Fox, M. Marso, M. Heuken, H. Lüth, P. Kordos, 

IEEE Elec. Device. Lett., 23 (2002) 4 
[15] K. Cheng, M. Leys, S. Degroote, J. Derluyn, B. Sijmus, P. Favia, O. Richard, H. 

Bender, M. Germain, G. Borghs, Jpn. J. Appl. Phys., 47 (2008) 1553 
[16] E. Chumbes, A. Schremer, J. Smart, Y. Wang, N.  MacDonald, D. Hogue, J. Komiak, 

S. Lichwalla, R. Leoni, J. Shealy, IEEE Elec. Device. Lett., 48 (2001) 420 
 


